Corrigendum to “Gruff ultrafilters” [Topol. Appl. 210 (2016) 355–365]
نویسندگان
چکیده
منابع مشابه
Corrigendum to "Soft matrix theory and its decision making" [Comput. Math. Appl 59 (2010) 3308-3314]
The authors regret that there is a correction needed to Reference [29] and apologize for any inconvenience caused. Reference [29] should read ‘‘N. Çağman, S. Enginoğlu, Soft set theory and uni-int decision making, European Journal of Operational Research 207 (2010) 848–855’’ instead of ‘‘N. Çağman, S. Enginoğlu, Soft set theory and uni-int decisionmaking, European Journal of Operational Researc...
متن کاملCorrigendum to "Application of the optimal homotopy asymptotic method to squeezing flow" [Comput. Math. Appl 59 (2010) 3858-3866]
Corrigendum Corrigendum to ‘‘Application of the optimal homotopy asymptotic method to squeezing flow’’ [Comput. Math. Appl. 59 (2010) 3858–3866] M. Idrees a, S. Islam b,∗, Sirajul Haq a, Siraj-ul-Islam c a Faculty of Engineering Sciences, GIK Institute, Topi, NWFP, Pakistan b Department of Mathematics, CIIT, H-8/1, Islamabad 44000, Pakistan c NWFP University of Engineering and Technology, Pesha...
متن کاملLinear Ultrafilters
Let X be a k-vector space, and U a maximal proper filter of subspaces of X. Then the ring of endomorphisms of X that are ‘‘continuous’’ with respect to U modulo the ideal of those that are ‘‘trivial’’ with respect to U forms a division ring E(U ). (These division rings can also be described as the endomorphism rings of the simple left End( X )-modules.) We study this and the dual construction, ...
متن کاملCorrigendum to "Fixed point theory for cyclic weak ϕ-contraction" [Appl. Math. Letters 24 (6) (2011) 822-825]
We correct the proof of Theorem 6 in the letter ‘‘Fixed point theory for cyclic weak φ-contraction’’ [E. Karapınar, Fixed point theory for cyclic weak φ-contraction, Appl. Math. Lett. 24 (6) (2011) 822–825]. © 2010 Elsevier Ltd. All rights reserved.
متن کاملCorrigendum to "enumerating permutation polynomials - I: Permutations with non-maximal degree": [Finite Fields Appl. 8 (2002) 531-547]
Let Fq be a finite field with q elements and suppose C is a conjugation class of permutations of the elements of Fq . We denote by C = (c1; c2; . . . ; ct ) the conjugation class of permutations that admit a cycle decomposition with ci i-cycles (i = 1, . . . , t). Further, we set c = 2c2+· · ·+ tct = q−c1 to be the number of elements of Fq moved by any permutation in C. If ∈ C, then the permuta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2017
ISSN: 0166-8641
DOI: 10.1016/j.topol.2017.09.016